THE ACTIVATION ENTHALPY AND ENTROPY FOR THE INVERSION-ROTATION PROCESS IN DIBENZYLMETHYLAMINE

C. HACKETT BUSHWELLER,* J. W. O'NEIL and H. S. BILOFSKY

Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts

(Received in the USA 13 October 1971; Received in the UK for publication 26 January 1972)

Abstract The temperature dependence of the PMR spectrum of the diastereotopic benzyl protons of dibenzylmethylamine has provided the activation parameters for nitrogen inversion. A method is described to account for the substantial variation in T_2 of the benzyl protons resonances as a function of temperature in the intermediate exchange region.

RECENTLY there has been considerable interest in the direct observation of rotation¹ or inversion² processes in acyclic amines using DNMR spectroscopy.^{3, 4} An important compound in the investigation of rate processes in acyclic trialkylamines has been dibenzylmethylamine (1). In the event of slow nitrogen inversion (eq. 1) on the NMR time scale, the diastereotopic benzyl protons of a given benzyl group of I are nonequivalent giving rise to an AB spectrum.² Fast nitrogen inversion with concomitant rotation about the benzyl carbon-nitrogen bond will render the two diastereotopic benzyl protons equivalent.⁵

In all previous reports concerning the measurement of the rate of nitrogen inversion in I using the DNMR method, the rate was determined at only one temperature enabling the calculation of just the free energy of activation (ΔG^{\ddagger}) .² However, for the purpose of comparing the DNMR data to the enthalpy of activation (ΔH^{\ddagger}) for other amines obtained from microwave or vibrational spectroscopy or theoretical calculations,⁴ it is important to extract ΔH^{\ddagger} and ΔS^{\ddagger} (entropy of activation) from the variable temperature NMR spectra.

This report concerns the measurement of ΔH^{\ddagger} and ΔS^{\ddagger} for nitrogen inversion in I (eq. 1) using the DNMR technique and employing an empirical method to account for a significant temperature dependence of T₂ for the benzyl proton resonances at very low temperatures.

^{*} Alfred P. Sloan Research Fellow, 1971-73.

RESULTS AND DISCUSSION

Examination of the ¹H NMR spectrum (60 MHz) of I (0.08 M in CH₂CHCl) at about -100° reveals two sharp singlet resonances for the NCH₃ (δ 2.08) and NCH₂ (δ 3.42) groups consistent with rapid nitrogen inversion on the NMR time scale. Upon lowering the temperature, the NCH₃ resonance broadens substantially but remains Lorentzian indicating a decreasing T₂ at lower temperatures (increasing viscosity). The temperature dependence of the width-at-half-height ($W_{\frac{1}{2}}$) of the NCH₃ peak is illustrated in Fig 1. The NCH₂ peak also broadens substantially at

FIG 1. Temperature dependence of the width-at-half-height $(W_{\frac{1}{2}})$ of the N--CH₃ resonance and interpolated behavior for NCH₂ peaks in I (0.08 M in CH₂CHCl). The $W_{\frac{1}{2}}$ (NCH₂) at low temperatures (slow exchange) was obtained from a total line shape analysis.

lower temperatures separating clearly into an AB spectrum ($\Delta v_{AB} = 17$ Hz; $J_{AB} = 13$ Hz) at *ca.* -152° (Fig 2) consistent with slow nitrogen inversion on the NMR time scale.² Each component of the AB spectrum at -155° has a substantially greater W_{\pm} than that observed at higher temperatures and it is evident that in the intermediate exchange region both the nitrogen inversion rate process and a decreasing T₂ at lower temperatures will contribute to the benzyl protons line shape. Neglect of the variation in T₂ with temperature will introduce serious errors into the activation parameters derived from the total NMR line shape analysis.³

Unfortunately, in the case of I, the variations in T_2 for the NCH₃ and NCH₂ resonances are different at very low temperatures. The behavior of the NCH₃ resonance is illustrated in Fig 1. Although the W_{\pm} of the NCH₃ and NCH₂ resonances are essentially identical at -100° , the W_{\pm} of each NCH₂ peak (13.0 Hz obtained from a total line shape analysis) at -155° is significantly different from the W_{\pm} of NCH₃ (19.3 Hz) a phenomenon observed by other workers.^{2d} Thus, in order to obtain the effective T_2 (or W_{\pm}) of the NCH₂ resonances in the region of partial peak collapse, the temperature dependence of W_{\pm} of NCH₂ was estimated by assuming the same general but attenuated temperature dependence of W_{\pm} (NCH₂) as observed for W_{\pm} (NCH₃).

<u>experimental</u>

FIG 2. Temperature dependence of the ¹H NMR spectrum (60 MHz) of the NCH₂ protons of I (0.08 M in CH₂CHCI) and theoretical spectra as a function of the rate of nitrogen inversion.

Thus, the temperature dependence of W_{+} (NCH₂) in the region of peak collapse was approximated by interpolation between a fast exchange W_{\downarrow} (NCH₂) and two values obtained from total line shape analysis under slow exchange conditions (See dotted line in Fig 1). Accounting for the variation in T_2 in this manner, a series of normalized theoretical DNMR spectra⁶ were calculated and fit by superposition to the experimental spectra (Fig 2) at various temperatures. A least squares fit of an Arrhenius plot gave $E_a = 7.5 \pm 0.4$ kcal/mole, $\Delta H = 7.2 \pm 0.4$ kcal/mole, $\Delta S^{\ddagger} = 4 \pm 3$ eu, and $\Delta G^{\ddagger}_{-141^{\circ}} = 6.6 \pm 0.1$ kcal/mol for the nitrogen inversion process. The error limits reported above are maximum errors obtained from an alternate straight line drawn through the Arrhenius plot which gave a reasonable though poorer fit than the line used. We prefer to report the error limits in this way because there still may be undetermined systematic errors in our analysis,³ e.g., systematic errors resulting from our treatment of T₂ of the NCH₂ peaks (Fig 1). Although there is apparently no variation in the AB chemical shift as a function of temperature from -152° to -160° (slow exchange conditions), a small variation could easily be obscured by the very broad lines observed at these low temperatures.

With regard to the line broadening, we have also observed that at relatively high amine concentrations (>0.2 M), the AB pattern becomes less well resolved, *i.e.*, greater W_4 , consistent with a smaller T_2 due to increased viscosity at higher amine concentrations. The source of the peak broadening exclusive of exchange processes observed for both the NCH₃ and NCH₂ resonances at very low temperatures is most likely due to the usual spin-spin relaxation mechanisms dependent on viscosity and *not* to ¹⁴N quadrupolar relaxation.^{24,7} The observation of sharp singlets at -100° for the NCH₃ and NCH₂ resonances in I revealing the absence of any ¹⁴N—¹H spin-spin coupling $(J_{N,H} = 0.6 \text{ Hz})^{7c}$ indicates that the ¹⁴N quadrupolar relaxation time $(T_q)^{7d}$ is short enough at -100° to cause rapid ¹⁴N spin state interconversion and decoupling of ¹⁴N from ¹H. Indeed, as the temperature is lowered and the viscosity increases, T_q should decrease and more effectively wash out the ¹⁴N—¹H coupling rendering the lines *more sharp*.

It is apparent from the activation parameters determined for I that the major contribution to ΔG^{\ddagger} is ΔH^{\ddagger} and that ΔS^{\ddagger} is relatively small. Such an observation is consistent with a simple rate process such as nitrogen inversion.^{3,4} The positive ΔS^{\ddagger} is also consistent with a transition state involving planar nitrogen (i.e., expanded CNC bond angles as compared to the pyramidal ground state) and a greater degree of rotational freedom as compared to the ground state. In order to render the diastereotopic NCH₂ protons isochronous on the NMR time scale, it is also necessary to have rotation about the N—CH₂ bond. Thus, the activation parameters reported here may also include a torsional contribution due to CH₂—N rotation.

The ΔH^{\ddagger} for the inversion-rotation process in I ($\Delta H^{\ddagger} = 7.2 \pm 0.4$ kcal/mole) is comparable to that for (CH₃)₃N obtained from application of the valency force model to vibrational spectroscopic data ($\Delta H^{\ddagger} = 7.5$ kcal/mole)⁸ or from MINDO SCF-MO calculations ($\Delta H^{\ddagger} = 6.5$ kcal/mole).⁹

The barrier to nitrogen inversion in I ($\Delta H^{\ddagger} = 7.2 \text{ kcal/mole}$) is also significantly greater than the rotational barrier in trimethylamine ($\Delta H^{\ddagger} = 4.4 \text{ kcal/mole}$)¹⁰ and consistent with our recently criticized statement^{2c} that the ΔH^{\ddagger} for the process being observed in I is significantly different from the rotational ΔH^{\ddagger} in trimethylamine. That criticism^{2c} was included in a paper reporting negative entropies of activation as large as -36 eu for rate processes in a scries of neopentyl amines. The slowed rate process observed in the neopentyl amines was assigned to C—N bond rotation,^{2c} although nitrogen inversion cannot unequivocally be ruled out. The very large negative ΔS^{\ddagger} obtained for certain neopentyl amines^{2c} is not consistent with an inversion process. Also, it does not seem reasonable that the assigned rotation process would have such a large negative ΔS^{\ddagger} . Usually, large positive or negative entropies of activation for simple conformational equilibrations obtained using the DNMR method result from systematic errors in the line shape analysis or inaccurate temperature measurement.³

EXPERIMENTAL

The NMR spectra were obtained using a Varian HR-60A spectrometer equipped with a custom-built variable temperature probe. Spectral calibrations were performed by the audiomodulation technique using a Hewlett-Packard 641A audio oscillator and 5221B electronic counter.

Temperature measurement was performed using a calibrated copper-constantan thermocouple permanently in place in the probe and is done simultaneously with the recording of the spectrum. Temperature measurement is accurate to $\pm 0.3^{\circ}$ at the sample. Activation enthalpy and entropy for the inversion-rotation process in dibenzylmethylamine 2701

Matching of theoretical to experimental spectra was performed by superposition of normalized theoretical spectra on the experimental spectra. In all cases, the fit was essentially perfect and a calculated spectrum involving a 5% deviation in the chosen rate constant gave an obviously poor fit for all rate constants used in the Arrhenius plot. Thus we assign a maximum error of $\pm 5\%$ to each rate constant.

Acknowledgement – We are grateful to the National Science Foundation (Grant No. GP-18197) for support, to Professor M. Saunders for the computer programs used, and to the Worcester Area College Computation Center for donated computer time.

REFERENCES

- ¹ ^a C. H. Bushweller, J. W. O'Neil, and H. S. Bilofsky, J. Am. Chem. Soc. 92, 6349 (1970); ^b C. H. Bushweller, J. W. O'Neil, and H. S. Bilofsky, *Ibid.* 93, 542 (1971)
- ² ^a M. Saunders and F. Yamada, *Ibid.* 85, 1882 (1962); ^b W. R. Morgan and D. E. Leyden, *Ibid.* 92, 4527 (1970); ^c S. Brownstein, E. C. Horswill, and K. U. Ingold, *Ibid.* 92, 7217 (1970); ^d M. J. S. Dewar and W. B. Jennings, *Ibid.* 93, 401 (1971); ^c C. H. Bushweller and J. W. O'Neil, *Ibid.* 92, 2159 (1970)
- ³ G. Binsch, Top. Stereochem. 3, 97 (1968)
- ⁴ J. M. Lehn, Topics in Current Chemistry 15, 311 (1970); A. Rauk, L. C. Allen, and K. Mislow, Angew. Chem. internat. Edit. 9, 400 (1970); H. Kessler, Ibid. 9, 219 (1970)
- ⁵ K. Mislow and M. Raban, Top. Stereochem. 1, 1 (1967); K. R. Hanson, J. Am. Chem. Soc. 88, 2731 (1966)
- ⁶ M. Saunders and F. Yamada, *Ibid.* 85, 1882 (1963); S. Alexander, J. Chem. Phys. 27, 1067 (1957)
- ⁷ a J. A. Pople, Mol. Phys. 1, 168 (1958); ^b H. Bcall, C. H. Bushweller, W. J. Dewkett, M. Grace and H. S. Bilofsky, J. Am. Chem. Soc. 93, 2145 (1971); ^c D. W. Larsen, J. Phys. Chem. 75, 505 (1971); ^d J. P. Kintz-inger and J. M. Lehn, Mol. Phys. 14, 133 (1968)
- ⁸ R. E. Weston, Jr., J. Am. Chem. Soc. 76, 2645 (1954); G. Koeppl, D. S. Sagatys, G. S. Krishnamurthy, and S. I. Miller, *Ibid.* 89, 3396 (1967)
- ⁹ M. J. S. Dewar and M. Shanshal, *Ibid.* **91**, 3654 (1969)
- ¹⁰ D. R. Lide, Jr. and D. E. Mann, J. Chem. Phys. 28, 572 (1958)